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ABSTRACT 

The System Dynamics and Vibrations final project centered on an electro-mechanical device that 

served the original purpose of providing an impact emulator for the AURA virtual reality immersive 

gaming vest.  The electro-mechanical device’s operation can be modelled as a two degree of freedom 

system through the interaction of a mass-spring-damper system and a resistor-inductor-capacitor 

circuit.  The goals of this project was to develop the coupled electro-mechanical differential 

equations, simulate the response of the system for varying initial conditions, plotting the frequency 

response functions, and developing/plotting the transmissibility to the ground. 
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1. Developing the Coupled Differential Equations 

1.1 Development of Electrical Differential Equation 

1.1.1 Summary of Procedure 

For the first portion of this project, the resistor-inductor-capacitor circuit was analyzed in 
order to develop the differential equation for its behavior.  This process was completed using 
Kirchhoff’s Voltage Laws as well as the time domain expressions for impedance.   

1.1.2 Development of Differential Equation 

The following figure and equations summarize the process that was utilized to obtain the 
resistor-inductor-capacitor circuit’s differential equation for its behavior. 

 

 
Figure 1. Modelled Circuit 

Vemf = B �̇� 
  

Circuit Equation (KVL) 

 Vext – Ri – 
1

𝐶
∫ 𝑖𝑑𝑡 – L

𝑑𝑖

𝑑𝑡
 – B�̇� = 0 

  
Final Differential Equation 

L�̈� + B�̇� + R�̇� + 
1

𝐶
q = Vext 

 

1.1.3 Analysis & Discussion 

Kirchhoff’s Voltage Law was successfully used to obtain the differential equation for the 
modelled circuit’s behavior.  It can be noted that a linear velocity term appears in this equation 
coupled with the magnetic field (B).  This term will be shown in the next section to be the 
connecting term between the electrical and mechanical systems. 

1.2 Development of Mechanical Differential Equation 

1.2.1 Summary of Procedure 

For the second portion of this project, the mass-spring-damper mechanical system was 
analyzed in order to develop the differential equation for its motion.  This process was completed 
using free body diagram analysis as well as Newton’s second law (∑ 𝐹 = ma).  
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1.2.2 Development of Differential Equation 

The following figure and equations summarize the process that was utilized to obtain the 
mass-spring-damper mechanical system’s differential equation for its behavior. 

 
Figure 2. Modelled Mechanical System 

 

   

 

 

 
Figure 3. Mechanical System Free Body Diagram 

femf  = Bi 
 
+  ∑ 𝐹𝑦 = fext + femf - c�̇� – kx – mg = m�̈� 

                  –mg + fext = m�̈� + c�̇� + kx – Bi 
 
    m�̈� + c�̇� – B�̇� + kx = fext – mg  
  
Final Differential Equation 
m�̈� + c�̇� – B�̇� + kx = fext 
 
Final Combined Electrical and Mechanical Matrix Equation of Motion 
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𝑐 −𝐵
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1.2.3 Analysis & Discussion 

Newton’s second law was successfully used to obtain the differential equation for the 
modelled mechanical system’s behavior.  It can be noted that a current term appears in this 
equation coupled with the magnetic field (B).  This confirms the observation that the magnetic 
field term links the electrical and mechanical systems.  When combining the equations of motion, 
a two degree of freedom matrix equation can be constructed that accurately represents both 
systems and their interactions. 
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mg 
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2. Simulating the Response of the System to Initial Conditions 

2.1 Simulating the Response of the System to Initial Conditions 

2.1.1 Summary of Procedure 

For this portion of the project, the response of the electro-mechanical system was modelled 
for varying initial conditions and forcing functions.  MATLAB was utilized in order to simulate the 
following responses.  General parameters that were applied to all sections of these simulations 
include: 

 m = 0.025 kg 
 c = 9 Ns/m 
 k = 18 kN/m 
 L = 1.0 mH 
 R = 1 Ω 
 C = 50 𝜇F 
 B = 6 W/m 

2.1.2 Simulation of Initial Conditions (Part 1) 

The given initial conditions for the first section of simulation were as follows:  

 x = 0.008 m; �̇� = 0 m/s; q = 0 C; �̇� = 0 A 

The given initial forcing functions for the first section were: 

 f(t) = 0 N; V(t) = 0 V 

The response was plotted over a time range of 0 seconds to 0.05 seconds. 

 
Figure 4. Displacement, Charge, Velocity, Current Response for Part 1 
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2.1.3 Analysis & Discussion (Part 1) 

As seen in Figure 4, the only initial condition was a positive displacement of the mass in the 
electro-mechanical system.  This initial condition was observed to produce a decaying oscillatory 
motion in both the mechanical and electrical systems that had essentially decayed to zero after 
0.03 seconds.  This behavior seems logical as the initial displacement of the mass was relatively 
small (8mm).  Also, it can be noted that the displacement and velocity begin out of phase with the 
charge and current, but after half an oscillation (approximately .005 seconds) appear to move in 
phase for the remainder of the motion.  As a general conclusion, it can be stated that a 
displacement of 8mm resulted in a 2.25A current. 

2.1.4 Simulation of Initial Conditions (Part 2) 

The given initial conditions for the second section of simulation were as follows:  

 x = 0 m; �̇� = 0 m/s; q = 0 C; �̇� = 12.0 A 

The given initial forcing functions for the second section were: 

 f(t) = 0 N; V(t) = 0 V 

The response was plotted over a time range of 0 seconds to 0.05 seconds. 

 
Figure 5. Displacement, Charge, Velocity, Current Response for Part 2 
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circuit, the charge and current had essentially decayed to zero after 0.01 seconds whereas the 
mechanical system took approximately 0.03 seconds to decay to zero.  As a general conclusion, it 
can be stated that a current of 12A resulted in a 0.2mm displacement.  Comparing this result to 
Part 1, it can also be stated that an initial displacement was considerably more effective at 
creating a complimentary current than a current was at generating motion in the mass.  This is a 
useful observation when considering how the electro-mechanical device can be most effectively 
implemented.    

2.1.6 Simulation of Initial Conditions (Part 3) 

The given initial conditions for the third section of simulation were as follows:  

 x = 0 m; �̇� = -1 m/s; q = 0 C; �̇� = 5.0 A 

The given initial forcing functions for the third section were: 

 f(t) = 0 N; V(t) = 0 V 

The response was plotted over a time range of 0 seconds to 0.05 seconds. 

 
Figure 6. Displacement, Charge, Velocity, Current Response for Part 3 
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can be stated that when current is applied initially (Parts 2 and 3) it can be observed to decay 
from the system quite rapidly.  In addition, an initial velocity was noted to be ineffective at 
generating a complimentary current in the electrical system as well as does not guarantee a 
substantial displacement.  These conclusions again offer insights into potentially successful 
applications for this device. 

 

2.1.8 Simulation of Initial Conditions (Part 4) 

The given initial conditions for the fourth section of simulation were as follows:  

 x = 0 m; �̇� = 0 m/s; q = 0 C; �̇� = 0 A 

The given initial forcing functions for the fourth section were: 

 f(t) = 0 N; V(t) = 9sin(100𝜋t2) V 

The response was plotted over the time range of 0 seconds to 10 seconds and was then 
further analyzed between the time ranges of 0 seconds to 0.5 seconds and 1.1 seconds to 1.6 
seconds. 

 
Figure 7. Displacement, Charge, Velocity, Current Response for Part 4 
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Figure 8. Displacement, Charge, Velocity, Current Response for Part 4 (0-0.5 seconds) 

 

 
Figure 9. Displacement, Charge, Velocity, Current Response for Part 4 (1.1-1.6 seconds) 
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four response components appears to increase over time.  This can likely be attributed to the 
continuous nature of the forcing voltage function.  For example, the response at 1.3 seconds is 
not solely a function of the input voltage at 1.3 seconds, but rather the culmination of all previous 
responses.  This was further highlighted by advice given by the instructor in class to plot the 
response from 0 seconds regardless of the displayed time frame window.   

2.1.10 Simulation of Initial Conditions (Part 5) 

The given initial conditions for the fifth section of simulation were as follows:  

 x = 0 m; �̇� = 0 m/s; q = 0 C; �̇� = 0 A 

The given initial forcing functions for the fifth section were: 

 f(t) = 0 N; V(t) = 12sin(120𝜋t) V (one half cycle repeating each second) 

The response was plotted over a time range of 0 seconds to 10 seconds and was then further 
analyzed between the time range of 0.98 seconds and 1.08 seconds. 

 
Figure 10. Displacement, Charge, Velocity, Current Response for Part 5 
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Figure 11. Displacement, Charge, Velocity, Current Response for Part 4 (0.98-1.08 seconds) 
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 Frequency Response Function 

 H(𝜔) = [−𝜔2[𝑀] + 𝑗𝜔[𝐶] + [𝐾]]
−1

 

  

 H(𝜔) = inv([−𝜔2𝑚 0
0 −𝜔2𝐿

] +  [
𝑗𝜔𝑐 −𝑗𝜔𝐵
𝑗𝜔𝐵 𝑗𝜔𝑅

] + [
𝑘 0

0 1
𝐶⁄

]) 

 

 H(𝜔) = inv([
−𝜔2𝑚 + 𝑗𝜔𝑐 + 𝑘 −𝑗𝜔𝐵

𝑗𝜔𝐵 −𝜔2𝐿 + 𝑗𝜔𝑅 +  1 𝐶⁄
]) 

  

3.1.3 Plotting of Frequency Response Function 
To plot this frequency response function over a range of frequencies, the matrix must be 

evaluated at each frequency resulting in the formation of a three dimensional matrix. 

Figure 12. Frequency Response Function 
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3.1.4 Analysis and Discussion 

The first general observation from Figure 12 is that the peak magnitudes, specifically for the 
displacement versus force and the displacement versus voltage curves, align with the relative          
-90 degree point on the phase portion of the plot.  Also, the maximum peaks for the displacement 
versus force and the displacement versus voltage curves each occur at roughly 150 Hz.  As 
expected from the final combined matrix equation of motion, the magnitudes of the charge versus 
force and the displacement versus voltage were identical.  Finally, 150 Hz (maximum magnitude) 
corresponds to the maximum real values and zero imaginary values in the plots. 

 

3.2 Developing and Plotting the Transmissibility 

3.2.1 Summary of Procedure 

For the last portion of the project, the transmissibility to the ground was developed and 
plotted using MATLAB over a frequency range of 0 Hz to 1000 Hz. 

3.2.2 Developing and Plotting of Transmissibility  

 
 
 
 
 
 
 
FT = fk + fc + fL 
FT = kx + c�̇� + B�̇� 
* Note that all forces are expressed in units of Newtons 
 
Transmissibility = Force of transmissibility * Frequency Response Function 
 
T = ((𝑗𝜔𝑐 + 𝑘) ∗ "𝑥/𝑉 𝐹𝑅𝐹") + (𝑗𝜔𝐵 ∗ "𝑞/𝑉 𝐹𝑅𝐹")) 
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Figure 13. Transmissibility Magnitude and Phase 
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Figure 13 shows the relationship between the frequency of the input voltage to the force 
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intended operation of the electro-mechanical device, this frequency range could either be desired 
(if a transmitted force is needed – eg the AURA virtual reality immersive gaming vest) or 

unwanted (if isolation of device is critical – eg see the WOW factor). 
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4. “WOW” Factor 

Having completed the analysis for this project, our team is proposing an idea to use this electro-
mechanical device in an application that will convert initial displacements into an output current 
rather than its original function of generating vibrations.  This idea was formulated when it was 
observed in part 2.1 that an initial displacement was more effective at creating a complimentary 
current than the other way around.  The proposal is to use this device under the flow of a waterfall 
(or similar displacement inducing conditions) in order to generate current for general power 
applications.   

When modelling how this proposed system would behave various portions of this project were 
considered.  As mentioned previously, the observation that displacement is an effective inducer of 
current served as the inspiration for the concept.  Next, 2.1.8 indicated that in order to achieve any 
form of consistent response that a continuous forcing function was needed.  As the goal for this 
proposal is to generate current, the forcing function focused upon was applied force.  Then, the ideal 
frequency for the forcing function was estimated as 150 Hz using the maximum values from the 
displacement versus voltage curve on the frequency response function.  Finally, the device would 
likely operate with the intent of minimum transmissibility to the ground as the design is for the 
electro-mechanical device to absorb as much of the force and displacement as possible.   

 

 
Figure 14. Medium Waterfall Projected Responses 
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In order to determine the magnitude of the force from the waterfall (used in Figure 14), a 

waterfall 150 times smaller than Niagra Falls was estimated to have a flow of 1,000 gallons per 

second (or 37,000 N of force).  This was multiplied by the absolute value of the sine function at the 

ideal frequency mentioned above.  Although a true waterfall would not behave as consistently as 

this mathematical model and current creation could be inhibited by other unknown factors, our 

team believes this application for the provided electro-mechanical device could feasibly produce 

current for general power applications. 
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APPENDICES 

A – MATLAB CODE 
% Part 1 
function prob_2dofNL 
% Using MATLAB v6 syntax. 
% 
% Important other related ODE functions: odeset; 
global NLflg 
% Define time range. 
t_start = 0; 
t_stop = 0.05; 
t0 = [t_start ; t_stop]; 
% Define initial conditions. 
x_vel = 0;  % m/s 
x_disp = 0.008; % m 
q_dot = 0;  % A 
q_i = 0;    % coulomb 
y0 = [x_vel ; q_dot ; x_disp; q_i]; 

  
NLflg = 0; 
options = odeset('RelTol',1e-9,'Refine',12,'InitialStep',1e-9); 
[t,y] = ode23(@ndof,t0,y0,options); 
subplot(2,2,1), plot(t,y(:,3)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlabel('Time [sec]'); 
ylabel('Displacement [m]'); 
subplot(2,2,3), plot(t,y(:,4)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlabel('Time [sec]'); 
ylabel('Charge [C]'); 

  
subplot(2,2,2), plot(t,y(:,1)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlabel('Time [sec]'); 
ylabel('Velocity [m/s]'); 
subplot(2,2,4), plot(t,y(:,2)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlabel('Time [sec]'); 
ylabel('Current [A]'); 

   
% ------------------------- 
% Function to be integrated 
% ------------------------- 
function ydot = ndof(t,y) 
global NLflg 
f_ext = 0; 

  
V_ext = 0; 
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k = 18000;   % N/m 
c = 9;       % Ns/m 
B = 6;       % W/m 
m = 0.025;   % kg 
Cap = 50e-6; % F 
R = 1;       % Ohms 
L = 1e-3;    % H 

  
xdot = y(1); 
qdot = y(2); 
x = y(3); 
q = y(4); 

  
xdotdot = (f_ext - k*x - c*xdot + B*qdot)/m; 
qdotdot = (V_ext - (1/Cap)*q - B*xdot - R*qdot)/L; 

  
ydot = [xdotdot ; qdotdot; xdot; qdot]; 

 
% Part 2 
function prob_2dofNL 
% Using MATLAB v6 syntax. 
% 
% Important other related ODE functions: odeset; 
global NLflg 
% Define time range. 
t_start = 0; 
t_stop = 0.05; 
t0 = [t_start ; t_stop]; 
% Define initial conditions. 
x_vel = 0;  % m/s 
x_disp = 0; % m 
q_dot = 12;  % A 
q_i = 0;    % coulomb 
y0 = [x_vel ; q_dot ; x_disp; q_i]; 

  
NLflg = 0; 
options = odeset('RelTol',1e-9,'Refine',12,'InitialStep',1e-9); 
[t,y] = ode23(@ndof,t0,y0,options); 
subplot(2,2,1), plot(t,y(:,3)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlabel('Time [sec]'); 
ylabel('Displacement [m]'); 
subplot(2,2,3), plot(t,y(:,4)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlabel('Time [sec]'); 
ylabel('Charge [C]'); 

  
subplot(2,2,2), plot(t,y(:,1)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlabel('Time [sec]'); 
ylabel('Velocity [m/s]'); 
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subplot(2,2,4), plot(t,y(:,2)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlabel('Time [sec]'); 
ylabel('Current [A]'); 

  
% ------------------------- 
% Function to be integrated 
% ------------------------- 
function ydot = ndof(t,y) 
global NLflg 
f_ext = 0; 

  
V_ext = 0; 

  
k = 18000;   % N/m 
c = 9;       % Ns/m 
B = 6;       % W/m 
m = 0.025;   % kg 
Cap = 50e-6; % F 
R = 1;       % Ohms 
L = 1e-3;    % H 

  
xdot = y(1); 
qdot = y(2); 
x = y(3); 
q = y(4); 

  
xdotdot = (f_ext - k*x - c*xdot + B*qdot)/m; 
qdotdot = (V_ext - (1/Cap)*q - B*xdot - R*qdot)/L; 

  
ydot = [xdotdot ; qdotdot; xdot; qdot];  

 
% Part 3 
function prob_2dofNL 
% Using MATLAB v6 syntax. 
% 
% Important other related ODE functions: odeset; 
global NLflg 
% Define time range. 
t_start = 0; 
t_stop = 0.05; 
t0 = [t_start ; t_stop]; 
% Define initial conditions. 
x_vel = -1;  % m/s 
x_disp = 0; % m 
q_dot = 5;  % A 
q_i = 0;    % coulomb 
y0 = [x_vel ; q_dot ; x_disp; q_i]; 

  
NLflg = 0; 
options = odeset('RelTol',1e-9,'Refine',12,'InitialStep',1e-9); 
[t,y] = ode23(@ndof,t0,y0,options); 
subplot(2,2,1), plot(t,y(:,3)) 
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title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlabel('Time [sec]'); 
ylabel('Displacement [m]'); 
subplot(2,2,3), plot(t,y(:,4)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlabel('Time [sec]'); 
ylabel('Charge [C]'); 

  
subplot(2,2,2), plot(t,y(:,1)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlabel('Time [sec]'); 
ylabel('Velocity [m/s]'); 
subplot(2,2,4), plot(t,y(:,2)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlabel('Time [sec]'); 
ylabel('Current [A]'); 

  
% ------------------------- 
% Function to be integrated 
% ------------------------- 
function ydot = ndof(t,y) 
global NLflg 
f_ext = 0; 

  
V_ext = 0;  

  
k = 18000;   % N/m 
c = 9;       % Ns/m 
B = 6;       % W/m 
m = 0.025;   % kg 
Cap = 50e-6; % F 
R = 1;       % Ohms 
L = 1e-3;    % H 

  
xdot = y(1); 
qdot = y(2); 
x = y(3); 
q = y(4); 

  
xdotdot = (f_ext - k*x - c*xdot + B*qdot)/m; 
qdotdot = (V_ext - (1/Cap)*q - B*xdot - R*qdot)/L; 

  
ydot = [xdotdot ; qdotdot; xdot; qdot]; 

 
% Part 4 
function prob_2dofNL 
% Using MATLAB v6 syntax. 
% 
% Important other related ODE functions: odeset; 
global NLflg 
% Define time range. 
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t_start = 0; 
t_stop = 10; 
t0 = [t_start ; t_stop]; 
% Define initial conditions. 
x_vel = 0;  % m/s 
x_disp = 0; % m 
q_dot = 0;  % A 
q_i = 0;    % coulomb 
y0 = [x_vel ; q_dot ; x_disp; q_i]; 

  
NLflg = 0; 
options = odeset('RelTol',1e-9,'Refine',12,'InitialStep',1e-9); 
[t,y] = ode23(@ndof,t0,y0,options); 
subplot(2,2,1), plot(t,y(:,3)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlabel('Time [sec]'); 
ylabel('Displacement [m]'); 
subplot(2,2,3), plot(t,y(:,4)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlabel('Time [sec]'); 
ylabel('Charge [C]'); 

  
subplot(2,2,2), plot(t,y(:,1)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlabel('Time [sec]'); 
ylabel('Velocity [m/s]'); 
subplot(2,2,4), plot(t,y(:,2)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlabel('Time [sec]'); 
ylabel('Current [A]'); 

  
figure(2) 
subplot(2,2,1), plot(t,y(:,3)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlim([0 0.5]); 
xlabel('Time [sec]'); 
ylabel('Displacement [m]'); 
subplot(2,2,3), plot(t,y(:,4)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlim([0 0.5]); 
xlabel('Time [sec]'); 
ylabel('Charge [C]'); 

  
subplot(2,2,2), plot(t,y(:,1)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlim([0 0.5]); 
xlabel('Time [sec]'); 
ylabel('Velocity [m/s]'); 
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subplot(2,2,4), plot(t,y(:,2)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlim([0 0.5]); 
xlabel('Time [sec]'); 
ylabel('Current [A]'); 

  
figure(3) 
subplot(2,2,1), plot(t,y(:,3)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlim([1.1 1.6]); 
xlabel('Time [sec]'); 
ylabel('Displacement [m]'); 
subplot(2,2,3), plot(t,y(:,4)) 
xlim([1.1 1.6]); 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlabel('Time [sec]'); 
ylabel('Charge [C]'); 

  
subplot(2,2,2), plot(t,y(:,1)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlim([1.1 1.6]); 
xlabel('Time [sec]'); 
ylabel('Velocity [m/s]'); 
subplot(2,2,4), plot(t,y(:,2)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlim([1.1 1.6]); 
xlabel('Time [sec]'); 
ylabel('Current [A]'); 

  
% ------------------------- 
% Function to be integrated 
% ------------------------- 
function ydot = ndof(t,y) 
global NLflg 
f_ext = 0; 

  
V_ext = 9*sin(100*pi*t.^2);  

  
k = 18000;   % N/m 
c = 9;       % Ns/m 
B = 6;       % W/m 
m = 0.025;   % kg 
Cap = 50e-6; % F 
R = 1;       % Ohms 
L = 1e-3;    % H 

  
xdot = y(1); 
qdot = y(2); 
x = y(3); 
q = y(4); 
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xdotdot = (f_ext - k*x - c*xdot + B*qdot)/m; 
qdotdot = (V_ext - (1/Cap)*q - B*xdot - R*qdot)/L; 

  
ydot = [xdotdot ; qdotdot; xdot; qdot]; 

 

% Part 5 
function prob_2dofNL 
% Using MATLAB v6 syntax. 
% 
% Important other related ODE functions: odeset; 
global NLflg 
% Define time range. 
t_start = 0; 
t_stop = 10; 
t0 = [t_start ; t_stop]; 
% Define initial conditions. 
x_vel = 0;  % m/s 
x_disp = 0; % m 
q_dot = 0;  % A 
q_i = 0;    % coulomb 
y0 = [x_vel ; q_dot ; x_disp; q_i]; 

  
NLflg = 0; 
options = odeset('RelTol',1e-9,'Refine',12,'InitialStep',1e-9); 
[t,y] = ode45(@ndof,t0,y0,options); 
subplot(2,2,1), plot(t,y(:,3)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlabel('Time [sec]'); 
ylabel('Displacement [m]'); 
subplot(2,2,3), plot(t,y(:,4)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlabel('Time [sec]'); 
ylabel('Charge [C]'); 

  
subplot(2,2,2), plot(t,y(:,1)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlabel('Time [sec]'); 
ylabel('Velocity [m/s]'); 
subplot(2,2,4), plot(t,y(:,2)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlabel('Time [sec]'); 
ylabel('Current [A]'); 

  
figure(2) 
subplot(2,2,1), plot(t,y(:,3)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlim([0.98 1.08]); 
xlabel('Time [sec]'); 
ylabel('Displacement [m]'); 
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subplot(2,2,3), plot(t,y(:,4)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlim([0.98 1.08]); 
xlabel('Time [sec]'); 
ylabel('Charge [C]'); 

  
subplot(2,2,2), plot(t,y(:,1)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(x_disp) ' m | ' 

num2str(x_vel) 'm/s]']) 
xlim([0.98 1.08]); 
xlabel('Time [sec]'); 
ylabel('Velocity [m/s]'); 
subplot(2,2,4), plot(t,y(:,2)) 
title(['2DOF time history (linear EOM) [IC: ' num2str(q_i) ' rad | ' 

num2str(q_dot) ' rad/s]']) 
xlim([0.98 1.08]); 
xlabel('Time [sec]'); 
ylabel('Current [A]'); 

  
% ------------------------- 
% Function to be integrated 
% ------------------------- 
function ydot = ndof(t,y) 
global NLflg 
f_ext = 0; 

  
V_ext = VPulse(t); 

  
k = 18000;   % N/m 
c = 9;       % Ns/m 
B = 6;       % W/m 
m = 0.025;   % kg 
Cap = 50e-6; % F 
R = 1;       % Ohms 
L = 1e-3;    % H 

  
xdot = y(1); 
qdot = y(2); 
x = y(3); 
q = y(4); 

  
xdotdot = (f_ext - k*x - c*xdot + B*qdot)/m; 
qdotdot = (V_ext - (1/Cap)*q - B*xdot - R*qdot)/L; 

  
ydot = [xdotdot ; qdotdot; xdot; qdot]; 

 
%% Part Ca 
clear 
clc 
hz = 0:.01:1000; 
omega = hz*2*pi; 
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m = 0.025;   % kg 
l = 1e-3;    % H 
c = 9;       % Ns/m 
b = 6;       % W/m 
r = 1;       % Ohms 
k = 18000;   % N/m 
cap = 50e-6; % F 

  
M = [m 0; 0 l]; 
C = [c -b; b r]; 
K = [k 0; 0  1/cap]; 

  
h = zeros(2,2,length(omega)); 
h1 = zeros(1,length(omega)); 
h2 = zeros(1,length(omega)); 
h3 = zeros(1,length(omega)); 
h4 = zeros(1,length(omega)); 

  
for n = 1:length(omega) 
    h(:,:,n) = inv(-(omega(n).^2)*M + j*omega(n)*C + K); 
    h1(1,n) = h(1,1,n); 
    h2(1,n) = h(2,1,n); 
    h3(1,n) = h(1,2,n); 
    h4(1,n) = h(2,2,n); 
end 

  
subplot(2,2,3); 
semilogy(hz,abs(h1),hz,abs(h2),hz,abs(h3),hz,abs(h4)); 
xlabel('Frequency (Hz)'); ylabel('Magnitude [m/N | m/V | C/N | C/V]'); 
title('Frequency Response Function'); 
legend('x/F','q/F','x/V','q/V'); 

  
subplot(2,2,1) 
plot(hz,angle(h1)*180/pi,hz,angle(h2)*180/pi,hz,angle(h3)*180/pi,hz,angle(h4)

*180/pi); 
xlabel('Frequency (Hz)'); ylabel('Phase (Deg)'); 
title('Frequency Response Function'); 
legend('x/F','q/F','x/V','q/V'); 

  
subplot(2,2,4); 
plot(hz,real(h1),hz,real(h2),hz,real(h3),hz,real(h4)); 
xlabel('Frequency (Hz)'); ylabel('Real [m/N | m/V | C/N | C/V]'); 
title('Frequency Response Function'); 
legend('x/F','q/F','x/V','q/V'); 

  
subplot(2,2,2) 
plot(hz,imag(h1),hz,imag(h2),hz,imag(h3),hz,imag(h4)); 
xlabel('Frequency (Hz)'); ylabel('Imaginary [m/N | m/V | C/N | C/V]'); 
title('Frequency Response Function'); 
legend('x/F','q/F','x/V','q/V'); 

  
%% Part Cb 
for n = 1:length(omega) 
    T(n) = ((j.*omega(n)*c + k).*h3(n)) + (j.*b*omega(n).*h4(n)); 
end 
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subplot(2,1,2); 
semilogy(hz,abs(T)); 
xlabel('Frequency (Hz)'); ylabel('Magnitude [N/V]'); 
title('Frequency Response Function'); 
legend('Ft/Vext'); 

  
subplot(2,1,1) 
plot(hz,angle(T)*180/pi); 
xlabel('Frequency (Hz)'); ylabel('Phase (Deg)'); 
title('Frequency Response Function'); 
legend('Ft/Vext'); 

 

 

 


